Transport of Mercury Past a Recreational Dam on Deer Creek in Nevada County, CA

Justin Wood
River Scientist
Who are we?

• Started in 1996 by a group of concerned local citizens, when Nevada City was replacing the historic Pine Street Bridge.

• Working closely with the city, Friends of Deer Creek successfully protected and monitored the creek during construction.

• Focus on scientific investigation and methods, to find solutions to Deer Creek's problems.
Sierra Streams Institute Programs

Restoration
- Restoration of salmon habitat
- Remediation of abandoned mine lands

Research
- Transport of mercury over dams
- Health impacts of mining contaminants

Training
- State protocols for watershed groups

Education
- Activity-based science

Laboratory
- Chemical and biological analysis

Friends of Deer Creek
- Water quality monitoring, habitat assessments
- Trail Construction
Mercury in the Deer Creek Watershed

• Historic gold mines in the Deer Creek watershed
 • Hg used to extract gold
 • Estimated Hg loss in Sierra Nevada of 11-12 million pounds of mercury (Churchill, 2000; Alpers et al. 2005).

• Bioaccumulation of Hg

• Downstream transport of Hg to Bay/Delta
 • Storm Events
 • Reservoir Releases

• Does Hg travel downstream past dams? Local problem? Downstream problem?
Transport of Sediment and Mercury in the Deer Creek Watershed

- Lake Wildwood Drawdown Releases
 - October 2008, 2011

- Storm Events
 - October 2009, January 2010
Lake Wildwood Drawdown Releases
Lake Wildwood Drawdown Releases

- Lake Wildwood built from 1969-1970
- Drawdown releases began in 1979
- Releases occur in mid-October
- Reservoir located downstream from historic gold mines on Deer Creek
 - 54.5 mi2 upstream watershed area
- 4 miles upstream from salmon habitat
Collaboration with Lake Wildwood

• Began in 2004

• Lake Wildwood Lake Committee
 • Monthly Lake Committee Meetings

• Monitoring and Data Analysis
 • Lake Sampling
 • Drawdown Releases and Storm Sampling
Lake Wildwood Drawdown Release Monitoring

- 2001 – 2004
 - Grab Samples (water quality)
- 2007
 - Autosamplers
 - Water Quality
 - Total Suspended Solids (TSS)
- 2008, 2011
 - Autosamplers
 - Water Quality
 - TSS, Mercury
 - Aquatic Biology
2008 Lake Wildwood Drawdown Release

• Collaboration With Lake Wildwood
 • Monthly Meetings
 • Plan for Release

• October 8-26, 2008
 • 18 day release. Peak flow 136 cfs.

• Autosamplers
 • Weir, Site 10
2008 Release - Results

2008 Lake Wildwood Release Sampling: 10/8-10/25
Weir Autosampler

Weir Sediment Load: 16,880.1 kg
Weir Mercury Load: 9.1 g
2008 Lake Wildwood Release Sampling: 10/8-10/25
Site 10 Autosampler
Site 10 Sediment Load: 24,101.2 kg
Site 10 Mercury Load: 13.5 g
2008 Release - Results

2008 Lake Wildwood Release Sampling: 10/8-10/25
Weir Autosampler
Sediment Load vs. Mercury Load
$R^2 = 0.70$

2008 Lake Wildwood Release Sampling: 10/8-10/25
Site 10 Autosampler
Sediment Load vs. Mercury Load
$R^2 = 0.87$
2008 Release - Problems

- Duration
- Equipment Stuck
2011 Lake Wildwood Drawdown Release

- Collaboration With Lake Wildwood
 - Monthly Meetings
 - Hydrologic Data Analysis
 - Plan for Release
 - Lake Sampling Pre-release

- October 16-25, 2011
 - 9 day release. Peak flow 386 cfs.
 - Half the duration of the 2008 release

- Autosamplers
 - Weir, Site 10
Collaboration With Lake Wildwood

2011 LWW Release Model D
Gate Open - Natural Flow Decrease Due to Loss of Head; Adjust if Needed for Desired Release Volume

Projected Flow
Release Volume = 118,000,000 cubic feet
2011 Release - Results

2011 Lake Wildwood Release Sampling: 10/16-10/25
Weir Autosampler

Weir Sediment Load: 18,614.0 kg
Weir Mercury Load: 6.1 g
2011 Release - Results

2011 Lake Wildwood Release Sampling: 10/16-10/25
Site 10 Autosampler
Site 10 Sediment Load: 29,601.8 kg
Site 10 Mercury Load: 13.2 g
2011 Release - Results

2011 Lake Wildwood Release Sampling: 10/16-10/25
Weir Autosampler Data
Sediment Load vs. Mercury Load
$R^2 = 0.50$

2011 Lake Wildwood Release Sampling: 10/16-10/25
Site 10 Autosampler
Sediment Load vs Mercury Load
$R^2 = 0.95$
Lake Wildwood Drawdown Release Summary

Lake Wildwood Release Mercury Loads

- **Mercury Load (g)**
- **Site**
 - Weir
 - Site 10

- **Years**
 - 2008
 - 2011

The diagram shows a comparison of mercury loads at Weir and Site 10 for the years 2008 and 2011.
Storm Sampling

- Sierra Nevada Conservancy Grant (2007-2012)
 - Mercury Bioavailability and Transport in Deer Creek
- Collaboration With Lake Wildwood
- Autosamplers, Grab samples
 - Upstream and Downstream of Lake Wildwood
- October 2009 and January 2010 Storm Events
Storm Sampling - October 2009

- Collaboration With Lake Wildwood
 - Access Cards
 - Monthly Meetings
- October 12-15, 2009
 - 3 day storm event. Peak flow 143 cfs.
- Autosampler
 - Watershed Outlet (Site 10)
Storm Sampling - October 2009

2009 Storm Sampling 10/12-10/15
Site 10 Autosampler

Sediment Load: 8,072.7 kg
Mercury Load: 5.6g

Value (see legend for units)

Date

Discharge (cfs)
Sediment Load (kg/hr)
Mercury Load (mg/hr)
Storm Sampling - October 2009

2009 Storm Sampling: 10/12 - 10/15
Site 10 Autosampler
Sediment Load vs. Mercury Load

$R^2 = 0.97$
• January 17-21, 2010
 • 4 day storm event. Peak flow 1,740 cfs.
• Autosampler
 • Watershed Outlet (Site 10)
• Grab Samples
 • Upstream, Downstream of Lake Wildwood
Storm Sampling – January 2010

2010 Storm Sampling 1/17- 1/21
Site 10 Autosampler

Site 10 Sediment Load: 180,766.3 kg
Site 10 Mercury Load: 315.5 g
Storm Sampling – January 2010

2010 Storm Sampling: 1/17- 1/21
Site 10 Autosampler
Sediment Load vs. Mercury Load
$R^2 = 0.76$
Storm Sampling Summary

Storm Mercury Loads

Mercury Load (g)

Year

2009

2010

350
300
250
200
150
100
50
0
FODC Storm Flow Mercury Data

Retention of Total Suspended Solids (TSS) in LWW during Storm Flows

<table>
<thead>
<tr>
<th>Date</th>
<th>Site 6 TSS</th>
<th>LWW Weir TSS</th>
<th>% TSS Retention in Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/09</td>
<td>1</td>
<td>18.9</td>
<td>1</td>
</tr>
<tr>
<td>12/12/09</td>
<td>1</td>
<td>24.1</td>
<td>1</td>
</tr>
<tr>
<td>1/19/10</td>
<td>1</td>
<td>73.2</td>
<td>1</td>
</tr>
<tr>
<td>2/5/10</td>
<td>1</td>
<td>7.0</td>
<td>2</td>
</tr>
<tr>
<td>2/24/10</td>
<td>1</td>
<td>29.8</td>
<td>2</td>
</tr>
<tr>
<td>2/27/10</td>
<td>1</td>
<td>51.5</td>
<td>2</td>
</tr>
<tr>
<td>3/3/10</td>
<td>1</td>
<td>21.2</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>7</td>
<td>32.2</td>
<td>12</td>
</tr>
</tbody>
</table>

Retention of Mercury (Hg) in LWW during Storm Flows

<table>
<thead>
<tr>
<th>Date</th>
<th>Site 6 Hg</th>
<th>LWW Weir Hg</th>
<th>% Hg Retention in Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/09</td>
<td>1</td>
<td>0.017</td>
<td>1</td>
</tr>
<tr>
<td>12/12/09</td>
<td>1</td>
<td>0.035</td>
<td>1</td>
</tr>
<tr>
<td>1/19/10</td>
<td>1</td>
<td>0.056</td>
<td>1</td>
</tr>
<tr>
<td>2/5/10</td>
<td>1</td>
<td>0.004</td>
<td>2</td>
</tr>
<tr>
<td>2/24/10</td>
<td>1</td>
<td>0.027</td>
<td>2</td>
</tr>
<tr>
<td>2/27/10</td>
<td>1</td>
<td>0.046</td>
<td>2</td>
</tr>
<tr>
<td>3/3/10</td>
<td>1</td>
<td>0.018</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>7</td>
<td>0.029</td>
<td>12</td>
</tr>
</tbody>
</table>
Releases vs. Storm Events

Comparison of Mercury Loads Between Storms and Release

- 2008 Lake Wildwood Release
- 2009 Storm
- 2010 Storm
- 2011 Lake Wildwood Release

Mercury Load (g) vs. Event
Conclusions

• Transport of mercury & sediment past Lake Wildwood reservoir
 • Sediment & mercury retained by reservoir
 • Downstream transport to Bay/Delta?

• Releases
 • Significant sediment and mercury loading between Weir & Site 10
 • 2008 Weir: 9.1g Hg, 2008 Site 10: 13.5g Hg - 4.4g Hg
 • 2011 Weir: 6.1g Hg, 2011 Site 10: 13.2g Hg - 7.1g Hg

• Storms
 • Significant sediment and mercury loading during storm events
 • Timing
 • Reservoir Dynamics

• Sediment Composition
 • Residual Data
 • 2009 storm/releases: 40% - 50% avg. inorganic material, 50% - 60% organic
 • 2010 storms: 60 - 70% avg. inorganic material, 30 - 40% organic

• Hg Partitioning?
 • Organic component? Inorganic component?
 • Material Separation
Future Projects and Ideas

• Summer Hg dynamics in Lake Wildwood
 • Colloidal material
 • Anaerobic sediments

• Mercury Transport/Deposition Studies
 • Lake Wildwood Mass Balance Hg
 • Scotts Flat Reservoir, Englebright Reservoir

• Bioaccumulation of Mercury

• Heavy Metal Contamination Clean-Up
 • EPA Brownfields, Phytoremediation

• Human Health and the Environment
Linking water, science, and people.